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Analyticity of a Hard-Core 
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A multicompotlent "anti-Widom-Rowlinson" lattice gas is introduced. An 
arbitrary number M of particle types is permitted, all having the same 
activity. The only interactions are nearest-neighbor exclusions of like 
particles (analogous to map-coloring problems). For any lattice it is 
shown that there is a finite number M0 (depending onty on the coordination 
number of the lattice) such that for all M > M0 the infinite volume corre- 
lation functions exist and are analytic functions of the activity, for all 
positive values of the common activity. 
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transition. 

1. I N T R O D U C T I O N  

We discuss here a lattice statistics model related to but  distinct from several 

well-known models. A model int roduced by Widom and Rowlinson ~1~ 
postulated a binary system of particles for which like particles were non-  

interact ing and unlike particles interacted through a hard-core repulsion. In  

two or more dimensions the model has been proved to have a phase transi- 

tion, ~2~ as have lattice versions ~3~ and the extension of the lattice version to 

an arbi t rary number  of particle types with equal activities~*~--still with hard- 
core repulsion between any unlike particles (we call this the WR model of 
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M components). These models are essentially ferromagnetic models and the 
proofs of the phase transitions have been the Peierls-type argument about 
the effect of boundary conditions, such as used with the ferromagnetic lsing 
model (see, e.g., Ref. 5). 

We introduce here an "ant i -Widom-Rowlinson" model (AWR) 
partaking of antiferromagnetic character: Unlike particles are noninteract- 
ing, while like particles interact through a hard-core repulsion. We allow an 
arbitrary number M of particle types, but restrict attention to a lattice gas 
version where the hard-core exclusion extends only to nearest-neighbor sites. 

The M = 1 case is simply the hard square lattice gas, known to exhibit 
a phase transition (6~ and thought to be isomorphic to the WR model as its 
number of components becomes infinitely large. <4~ It is easy to show that the 
M = 2 AWR and the M = 2 WR models are in fact isomorphic to an open 
lattice; in two or more dimensions this model is known to have a phase 
transition, again assuming the two particle types have the same activity. ~a~ 
If  all types have the same activity it appears plausible to expect the AWR 
model to become effectively noninteracting as M--+ oo and become iso- 
morphic to the M = 1 WR model (ideal lattice gas). We shall not actually 
prove this statement, but we will show that there exists a finite M0 such that 
there is no phase transition for the AWR model for M >/ Mo. 

The AWR model can also be viewed as a map-coloring problem, 
inasmuch as the exclusion of like neighboring types (or colors) is the essence 
of such coloring problems. A particularly interesting case is M = 3 on the 
square lattice at high activity, so that all sites are occupied. Computing the 
number of allowed configurations of this model is equivalent to calculating 
the entropy of square ice. <7~ 

For another reason the case M = 3 is worthy of note. For M = 1 or 2, 
the cases known to have phase transitions, the equilibrium state at high 
activity is not unique. For an open lattice in two or more dimensions there 
are at least two equilibrium states at high density, corresponding to different 
sublattice occupation. But for M >/ 3 the number of geometric arrangements 
of the filled lattice is infinite (for an open lattice), as shown, for example, by 
the residual entropy of square ice. 

This may be an important factor bearing on the question of the existence 
or absence of a phase transition of the system, and on the uniqueness of the 
equilibrium state. It is certainly true that those lattice systems for which 
phase transitions have been proved directly by the Peierls argument can be 
characterized by the statement that the high-activity phase has finite de- 
generacy. Other systems with infinite geometrical degeneracy in the high- 
activity phase have been shown (by other techniques) to be devoid of phase 
transitions~8-1~ to the obvious conjecture. There are, however, 
counterexamples Cl1'12~ that show the conjecture to be false as a general 
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principle; it is possible for a system to have a unique equilibrium state on 
both sides of a phase transition and to be disordered on both sides. Each 
of these counterexamples, however, is a dual of a more conventional system 
with finite degeneracies. 

The complete solution of the AWR model for arbitrary M might shed 
light on these questions. For the present, however, the only conclusion we 
will establish is the absence of a phase transition for sufficiently large (but 
finite) M; whether or not the same conclusion applies to any M greater 
than two is at present unknown. 

2. D E F I N I T I O N S  A N D  N O T A T I O N  

We begin with a finite collection A of "sites," which for the present will 
be quite general. At a later point we will specialize to the case of a regular 
" la t t ice"  of  sites. We shall use lower case letters near the end of the alphabet 
to denote the individual sites, such as x e A, and similar capital letters 
y c A for subsets of A. For the collection of " b o n d s "  we shall use ~ - - t h i s  
is a subset of A x A--wi th  typical element B ~ ~', more explicitly written 
as B = (x, y), where x and y are the "end points"  of the bond. We shall use 
a Greek letter early in the alphabet for a subset o f ~ ,  such as/3 c ~,  I f  Y c A, 
we shall denote by Ny = ~'  r~ (Y x Y) the bonds with end points restricted 
to Y. 

It is sometimes convenient to have an explicit notation for the end 
points of a bond B = (x, y), that is, the vertices upon which B is incident. 
We write for this v(B) = {x} u {y}, and for/3 c ~ we have v(/3) = UB~e v(B). 

Any collection/~ of bonds has a unique decomposition into connected 
components fij, given formally by 

/3 = U / 3 J ,  /3J L,(/3,) n  (/33 = if  i # j 

and the requirement that each subcollection /~ have no such (nontrivial) 
decomposition. For one of these connected components p~, we define its 
closure fij by 

U [(x,s) 
x,yev(Bj) 

and for any /3 c ~ '  we define the closure by /~ = U/~J- A central role is 
played by those subsets of ~ that are identical to their closures ; we denote by 
.~t(~,) this collection: /3 e.@I+(~) if and only if/3 = /~. In this and the pre- 
ceding paragraph ~ '  may be replaced by ~y for definitions restricted to bonds 
incident upon a subset Y c A. 

Keeping some such subset Y fixed, we now discuss a configuration on 
Y, by which we mean a mapping f :  Y--> Ira, where Im= {1, 2,..., M}, such 
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tha t f (x )  denotes the type of particle at site x. It should be noticed that no 
site of Y is empty; summation over all sets Y of occupied sites comes later. 
It should also be noted that f may or may not be a configuration allowed 
by the AWR rules. 

We denote by ~ry the space of such configurations, which space clearly 
has cardinality M tY', where ] Y] is the number of sites in Y. There is a natural 
mapping (which we call X) from 5s r onto ~*(My), given by 

B =  (x,y) c x ( f )  if and only if f (x)  = f ( y )  and (x ,y)~My 

That is, x( f )  is the collection of bonds joining sites with identical types of 
particles. The function x is many-to-one; in fact, the multiplicity of the 
inverse function is of sufficient importance to warrant a definition: 

Gy(/3) = ~ 1, (/3 e ~:*(My)) (1) 
f l z ( f )  = B 

In particular, Gy(~) is the number of allowed configurations of A for which 
g is the set of occupied sites. 

The partition function now may be written as 

M, z) = =_ 
Y c A  Y ~ A  

if each type of particle has the same activity ~ = z/M. It is clear that ~2(Y) 
is no greater than one and plays the role of the negative exponential of an 
effective potential function. 

3. U R S E L L  F U N C T I O N S  OF T H E  P O T E N T I A L  

The Ursell functions ~b of the (effective) potential are defined recursively 
by 

where the flj are the connected components of/3. The ~b functions are defined 
only on the nonvoid connected components. For example, if Y = {x, y} and 
(x ,y )eMy,  we find Gy(~) = M(M - 1) and ~b(Y) = - M - L  The Ursell 
functions ~b provide a criterion for the existence and analyticity of the corre- 
lation functions in the thermodynamic limit A-+  ~ (in the sense of van 
Hove); it is in fact that ~m 

11 + z- l l  > rain #-IR(~:) (3) 
~ > 0  
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where R(f) is an upper bound on the sum 

Rl(e) = max[  + (4) 
XO k #e~o, atf(~):v(S) = XO 

The summation is restricted to connected sets/3 equal to their closures. This 
criterion then establishes analyticity for sufficiently small activity, in the 
general case. If, however, the Ursell functions decay sufficiently rapidly with 
increasing Iv(/3)[, the region of analyticity can contain the entire positive 
activity axis. 

To study the behavior of the ~b functions we introduce an integrated 
version of Eq. (1), 

&(/3) = ~ ], /3 ~ ~ * ( ~ )  (5) 
,r:X([) = S 

so that 

Hr(/3) = ~ Or(y) (6) 
Y = B  

We can write an explicit formula for Hr(/3). Each functionfcontributing 
to Hr(/3) in Eq. (5) must be constant on each connected component of fi, 
so that 

Hr(/3) = M ira - ~s)l +,<s) (7) 

where v(/3) is the number of connected components of/3. 
It is shown in the appendix, based on the theory of M6bius functions on 

partially ordered sets, <13~ that Eq. (6) may be inverted to give 

Gr(;g) = ~ asHr(fi ) (8) 
B 

where for f le ~ * ( ~ )  

as = ~ ( -  1) lyt, as = 1 (9) 

where [Yl is the number of bonds in y. In other words, if/3 is regarded as a 
graph with vertices v(/3) and connected components /3j, the summation in 
Eq. (9) is over subgraphs that within each/3i are also connected and incident 
at each vertex of v(/3s). It follows easily from Eq. (9) that the coefficients a e 
can be factored according to the v(fi) connected components/3j of/3 as 

a~ = 1-~ as, (10) 
J 

It also follows that 

las~l ~< 2is? (11) 
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since the sum is over connected subgraphs and there are a total of  21BJ I 
subgraphs, connected or  not. 

I t  now follows that  

f~(Y) = M-tYIG.:.,-(2~)= 1 + ~" aBM -6(B> 
Be,~rt(~y) 

see) 

= 1 + ~ l-~ [M-~'e"aB,] (12) 

B r  

where we have introduced 8(/3) = !v(fi)l - v(f). It  follows then that  for the 
connected components  the Ursell functions are given by 

~b(fj) = M-(l'.,~e/- l:,asj (13) 

4. ABSENCE OF PHASE TRANSIT ION 

In this section we assume the following properties of  A and ~ as A --+ oo ; 
N o  site of  A is an end point  of  more than c bonds in ~ ,  for some fixed c > 0, 
and there is defined some complete ordering of  the sites. A " la t t i ce"  of  sites 
is a special case. 

Proposition 1. The Ursell functions ~b(fj) satisfy the bound 

)if(f<)} ~ 71"cB, >I (14) 

where 7 = 7(M) decreases to zero as M--> oo. 

Proof. By Eqs. ( I I )  and (13), 

]~b(13#)] ~< M-t~<Bpl + 1.2clv(Bj>l/2 = M(2cl2/M)I~<Bj>I 
~< [(2~ ~1 

since Iv(fij)l /> 2. Hence 7 may be taken as (2C/M)I/L 

Proposition 2. The number  of  connected sets f j  such that Xo ~ v(fj) and 
]v(fj)] = v is no greater than ~ for some positive a, 

Proof. Regarding (A, N') as a graph, we define for any f j  a unique 
progression of  bonds (i.e., a "latt ice walk") ,  beginning at x0, that  contains 
a bond  incident at each vertex of/~j. This walk will turn out to require no 
more than 2v steps. Since there are no more than e <z~> lattice walks of  2v 
step~ beginning at a specified site, there are no more than c 2~ connected sets 
Big such that xo e v(fj) and Iv(fj)l = v. 

It  is well known that  any connected graph contains at least one spanning 
tree g r a p h - - a  partial graph that contains no cycles and has an edge incident 
at each vertex. The ordering of  the sites (vertices) induces a natural ordering 
of  the spanning tree graphs, and we select the lowest one in that  induced 
ordering. A unique lattice walk is defined on this lowest spanning tree graph, 
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beginning at Xo, by the following three rules (where " o u t w a r d "  means away 
from xo and " i n w a r d "  means toward x0): 

1. A previously visited vertex is never revisited in an outward step. 
2. An outward step takes precedence over  an inward step; i.e., an 

inward step is taken only f rom a v~rtex of  degree one or f rom a vertex all of  
whose adjacent vertices have already been visited. 

3. A step is always t aken  in the direction of  the accessible vertex lowest 
in the ordering. 

It is clear that  the above rules define a unique lattice walk of  exactly 
2(v - I) < 2v steps, starting and ending at Xo, for  each connected set of  v 
bonds containing Xo. The p r o o f  is thus complete,  with ~ = c 2. We can now 
state our  main result. 

Theorem. There is an Mo > 0 such that  for M > Mo the A W R  model 
has no phase transit ion for  any positive real activity. 

Proof  The sum R1 in Eq. (4) is dominated  by 

R(~:) = 1 + ~ (r~()  v = (] - r ~ )  - I  (15) 
V > 0  

for  s c < ( y a ) - I  where y = y (M)  and ~ are given in Proposi t ions 1 and 2, 
respectively. It  is trivial to show that  

min ~:-IR(~:) = 4~y (16) 
{ 

and this min imum can be made arbitrari ly small by choosing M large enough. 
According to Eq. (3), analyticity is guaranteed for  z in the region I1 + z - l l  
> 4ay. Hence, for 4c~y < 1, the entire positive real axis is included. With 
the above choices for  ~ and y, this leads to the condit ion 

4(2C/Mo)112c = < 1 (17) 

For  the square lattice with c = 4, Eq. (17) gives M0 > 216 , a value 
which is certainly far larger than necessary. I t  would be most  interesting to 
know if Mo = 3 is large enough. 

A P P E N D I X .  M O B I U S  F U N C T I O N S  ON PARTIALLY 
O R D E R E D  SETS 

We review briefly the theory of  M6bius  functions on partially ordered 
sets (la'14) and apply that  theory to the solution of  Eqs. (6) and (7). 

Let Q be a finite set partially ordered by the relation ~<. The M6bius  
func t ion / , (x ,  y) for  Q is defined inductively by / , (x ,  x) = 1 for  all x ~ Q and 

y )  = - , , ( x ,  
x N z < y  
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for x < y. Otherwise, Ix(x, y) = 0. The M6bius function Ix is inverse to the 
function, defined by 

~(x,y)= {lo x <~ y 
otherwise 

Since ~ is inverse to [, a relation of the sort 

H(x) = ~ G(y)= ~ G(y)~(y, x) 
y < X yEQ 

defined on Q can be solved for G: 

G(x) = ~ H(y)ix(y, x) (A.1) 
y e Q  

This is the M6bius inversion formula. 
Now the finite set ~ + ( N y ) =  Q is partially ordered by inclusion: 

y ~< fi if y D fi, including the case y = 5. Equation (8) is the same as Eq. 
(18) with aB = tz(/3, ~) ,  where the void set ~ is the unique maximal element 
(called "1 ") in Q. 

The problem now is in evaluating the M6bius function. One case is easy- -  
if Q' = @(A) = set of all subsets of a finite set A, it is readily shown that 

tx(x ' y) = ( _  1)txl-I~l for x 4 y (A.2) 

where lxl is the number of elements (of A) in subset X. 
It is sometimes possible to obtain one M6bius function from another. 

An important example uses the notion of a Galois connection between two 
partially ordered sets P and Q. I f  7r: Q -+ P and p: P - ~  Q are both order- 
inverting functions satisfying rr(O(p)) > p and p(~r(q)) >t q for p E P, q e Q, 
then the pair (v, p) is called a Galois connection. 

Proposition. Let P and Q be partially ordered finite gets, each having 
a unique minimal element (0) and Q having a unique maximal element I. 
Let ~r : Q --~ P and p: P --~ Q be a Galois connection, and let Ix be the MSbius 
function for Q and Ix* the MSbius function for P. Suppose furthermore that 

~r(x) = 0 if and only if x = 1 

and 

p(0) = 1 

Then the MSbius functions are related by 

Ix(0, l) = ~ Ix*(0, a) (A.3) 
a ~ P :  .o(a) = 0 

For the proof  see Ref. 13. Our application is for Q = o~ as before, with 
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1 = z and 0 = ~ y ;  also we need P = ~ ( ~ r )  ordered  by a ~< y if a c y, so 

that  0 = ~ in P. [Notice that  the inclusion goes the oppos i te  direct ion f rom 
that  in Q.] By Eq. (A.2),  t~*(a, y) = ( -  1) r~l -I~t for  a ~< y, [al denot ing  now 

the number  of  bonds  in ~. 
The mappings  rr and  p are  defined by  

~-(,~) = ~, p ( y )  = .p 

and are readi ly  seen to be a Ga lo i s  connect ion.  Equa t ion  (A.3) now reads  

(-ip' 
yeP: y=~y 

which is the same as Eq. (9) with Y = v(/?). 
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